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ABSTRACT

The effect of ignoring complex modes on the solu-
tion of finline discontinuity problems is investiga-
ted. It is shown that the modal energy distribution
at both sides of the discontinuity may be greatly
affected by overlooking complex modes, even if
they are not strongly excited. Comparison to mea-
sured data is also given to justify the wvalidity of
the numerical results.

1. INTRODUCTION

The analysis of discontinuities between planar gui-
ding structures, in particular in microstrip and
finlines, has accepted increasing interest (e.g. /1/
- /6/). Proper modelling of such discontinuities is
fundamental for any successful printed circuit de~
sign. In the following, only finline discontinuity
problems will be discussed. Extending the discus-
sion to other printed planar structures is, how-
ever, straightforward.

Two rigorous approaches have been reported for
the analysis of finline discontinuity problems. The
first depends on the transverse resonance concept
(e.g. /1/ - /3/). Determination of finline high-order
modes is not needed for this approach. The pro-
blem is completely formulated in terms of homoge-
neously filled rectangular (or parallel plate) wave-
guide modes in conjunction with a proper modelling
of the tangential field in the metallization plane.
The main disadvantages of this approach are:

1.) The effect of the discontinuity on the dominant
mode only is available. No information concer-
ning high-order modes can be obtained.

2.} A complex discontinuity which is composed of a
number of cascaded simple discontinuities (e.g.
steps) has to be analyzed "as a whole". The
properties of the individual simple discontinui-
ties cannot, in general, be used to construct
an accurate solution for the complex disconti-
nuity due to the lack of information about
high-order modes.

3.} Complex discontinuities need a large number of
basis functions to properly model the tangenti-
al field in the fins' plane. This may lead to
dealing with oversized matrices which needs
excessive computation time.

The second approach depends on the modal expan-
sion concept (e.g. /4/ - /6/). The generalized scat-
tering or transmission matrix, which contains all
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information about the dominant as well as the
higher order modes is obtained for simple disconti-
nuities (e.g. steps). Complex discontinuities can be
analyzed by processing the generalized scattering
or transmission matrices characterizing the indivi-
dual simple steps. The main problem in this ap-
proach is the accurate determination of an approxi-
mately complete set of finline modes.

As has already been shown /7/, the Singular Inte~
gral Equation (SIE) technique is very efficient for
determining such a get. It has also been shown
that complex modes can be supported by finlines
/8/, so that ignoring these modes in constructing
an approximately complete set of finline modes may
lead to erroneous solutions.

This paper is addressed to study the effect of
overlooking complex modes on the solution of fin-
line discontinuity problems.

2. EFFECT OF IGNORING A MODE AT ONE SIDE OF
THE DISCONTINUITY

The problem will be discussed for the discontinuity
shown in Fig. (1). Waveguides "1" and "2" are as~
sumed to be quite general, except for the restric-
tion that both have discrete modal spectrum, which
simplifies the discussion to some extent. Matching N
modes of guide "1" to M modes of guide "2" at the
discontinuity plane z = 0 can be viewed as "a simi-
larity balance process". The mode coupling coeffi-
cient defined in /5/ for the boundary reduction
case

Aom = [ (% (D% - as )
s

represents a measure of the degree of similarity
between the n'th mode in guide "1" and the m’'th
mode in guide "2" (which has the smaller cross
section in the boundary reduction case). Two diffe-
rent modes in either guide "1" or guide "2" are
then completely "dissimilar"” due to the orthogonali-
ty relations /5/
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dnm means the Kronecker symbol.
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The n’th mode excited in guide "1" (which will be
called mode (a)) is balanced by exciting a "similar"
field in guide "2". This similar field is, in general,
composed of a superposition of all the M modes in
guide "2", the magnitude of each depends on its
degree of similarity to mode (a). In particular, the
magnitude of a mode with a high degree of simila-
rity will dominate the magnitudes of the other, less
similar, modes. This similarity balance process is
applied to each of the N modes in guide "1".

Let us assume now that the m’th mode in guide "2"
(which will be called mode (b))} has the largest
degree of similarity to mode (a). Omitting mode (b)
from the M modes of guide "2" can only be com-
pensated by increasing the magnitudes of modes
being less similar to mode (a), in order to get back
the similarity balance. This will disturb the modal
distributions (and hence the stored energy) at
both sides of the discontinuity. It is important to
note that this disturbance does not necessarily de-
pend on how strongly mode (a) is excited. Balan-
cing a weakly excited mode in guide "1" may re-
quire strongly excited modes in guide "2" which
have a very weak degree of gimilarity to that
mode.

Omitting, however, both mode (a) and mode (b} will
have a much smaller effect on the modal distribu-

tern within the distance 1 between the discontinu-
ity and the open circuit. It stores capacitive ener-
gy because 1 is slightly larger than half a guide
wavelength for this mode (1 = 5.0 mm, Agz = 8.945
mm). If complex modes are omitted the stored ener-
gy is calculated with an error of 19.34 %. The total
energy, on the other hand, which is stored in both
the dominant mode and all higher order modes
turns out to amount to -0.4059 taking complex
modes into account while it is +0.1272 if these
modes are omitted. The corresponding normalized
input impedance at the discontinuity plane is
-j0.1039 with and +j0.0001 without complex modes.
The error is larger than 100 %, because the effect
of overlooking complex modes has changed the ca-
pacitive nature of the structure between the dis-
continuity and the open circuit into an inductive
one.

It should be pointed out that this severe error is
due to overlooking only one pair of complex modes
(namely the 8’th and 9’th modes at side "2"), which
are only weakly excited. The error would be much
more disastrous if many complex mode pairs would
exist on one or both sides of the discontinuity.
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tions, in particular, if both are just weakly

excited.

3. EFFECT OF IGNORING COMPLEX MODES ON REFERENCES
FINLINE DISCONTINUITIES

As has already been shown /7/, finline modes septem

change their nature as any of the finline parame-
ters changes. A pair of an inductive and a capaci-
tive evanescent modes may become a complex pair,
and vice versa, as the slot width (e.g.) changes. If
we would analyze a discontinuity using only usual
{(non-complex) modes it can happen that a pair (or
more) of modes on one side of the discontinuity is
non-complex, while the corresponding pair on the
other side, which has the largest degree of simila-
rity, is a complex one. Both, the modal distributions
and the stored energy on both sides of the discon-
tinuity would then be greatly affected, even if the
former pair is not strongly excited. The situation is
much better if both pairs were complex, so that
both would be ignored in the matching process.

4. NUMERICAL RESULTS

In order to check the accuracy of the numerical
results, which takes complex modes into account,
comparison to measured data in Kaband is demon-
strated in Fig. 2, which shows the frequency re-
sponse of the resistive (Fig. 2a) and reactive (Fig.
2b) parts of the normalized input impedance of the
waveguide-finline junction shown in Fig. 3.

Table I shows the stored energy distributions at
both sides of the finline discontinuity shown in
Fig. 4, computed with and without taking complex
modes into consideration. Due to the large slot
width ratio (s;/s, = 35), convergence had to be
achieved by using 20 modes at both sides of the
discontinuity. The incident field is the dominant
mode at side "1" carrying unit power. The domi-
nant mode at side "2" shows a standing wave pat-
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Fig. 3: A waveguide-finline discontinuity
Parameters: WR-28  housing, substrate
thickness = 0.254 mm, substrate dielectric
constant = 2.22.
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mode 1 2 3 4 5 6 7 8 9 10
order
8 0.4853
1/¢mm) -30.6209 |~31.1519 |-31.6490 |-31.6513 |-31.7001 |-31.7043 | -j1.8729 |-31.8770 |-32.0855
energy
with C.M.| +0.2554 | +0.0046 | +0.1409 | +0.0001 | +0.0043 | -0.1749 | +0.0976 | +0.0009 | -0.0009 | -0.0632
energy
without | -0.0003 | +0.0044 [ +0.1204 | +0.0001 | +0.0033 | =0.2510 | +0.1377 | +0.0009 | -0.0008 | -0.0911
mode
s 11 12 13 14 15 16 17 18 19 20
3
1/(mm) [-32.1089 |-32.1094 [-32.4184 |-32.4409 |-32.5746 |-32.6949 |-32.7514 | =73.0220 {-73.1225 |-93.1641
energy
with C.M.| +0.0610 | +0.0192 | +0.0005 | -0.0007 | +0.0065 | -0.0279 | +0.0081 | +0.0724 | +0.0030 | -0.0012
energy
without | +0.0000 | +0.0000 | +0.0006 | -0.0011 | +0.0037 | -0.0458 | +0.0061 | +0.0264 | +0.0005 | ~0.0392
Table I-a
mode 1 2 3 4 s 6 7 8 9 10
order
8 0.7024 0.0073 |-0.0073
1/(mm) ~30.6037 [=30.7271 | -31.5945 | -71.6488 |-31.6772 |~31.7427 |-j1.8699 [-31.8699 [-71.8886
energy
with C.M.| -0.8219 | +0.0630 | +0.2718 | +0.0381 | +0.0000 | +0.0054 | +0.0375 | -0.0008 | -0.0008 | -0.0016
enerqgy
without | -0.6629 | +0.0879 | +0.3971 | +0.1023 | +0.0000 { +0.0198 | +0.1278 | —=——-== | ~=~=-=- -0.0000
mode 11 12 13 14 15 16 17 18 19 20
order
[
1/(mm) |-31.9680 | -32.3999 |[-32.4095 | -72.4667 | -72.4745 |-32.5318 |-32.6976 [-33.0679 [-33.1139 [-33.2065
energy
with ¢.M.| +0.0006 | +0.0164 | -0.0174 | -0.0035 | +0.0181 | +0.0002 | +0.0175 | +0.0035 | -0.0167 | -0.0153
energy
without | +0.0221 | +0.0058 | -0.0132 | -0.0053 | +0.0022 | +0.0002 | +0.0089 | +0.0032 | -0.0058 | -0.0027
Table I-b

quency = 30 GHz

a) at side "1"
b) at side "2"
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into account.

Table I: Modal energy distribution of the discontinuity shown in fig., 4 with
and without taking complex modes

Operating fre-




