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ABSTHACT

The effect of ignoring complex modes on the solu-
tion of finline discontinuity problems is investiga-

ted. It is shown that the modal energy distribution

at both sides of the discontinuity may be greatly

affected by overlooking complex modes, even if

the y are not strongly excited. Comparison to mea-

sured data is also given to justify the validity of

the numerical results.

1. INTRODUCTION

The analysis of discontinuities between planar gui-

ding structures, in particular in microstrip and

finlines, has accepted increasing interest (e.g. /1/

- /6/). Proper modelling of such discontinuities is

fundamental for any successful printed circuit de-
sign. In the following, only finline discontinuity

problems will be discussed. Extending the discus-

sion to other printed planar structures is, how-

ever, straightforward.

Two rigorous approaches have been reported for

the analysis of finline discontinuity problems. The

first depends on the transverse resonance concept

(e.g. /1/ - /3/). Determination of finline high-order
modes is not needed for this approach. The pro-

blem is completely formulated in terms of homoge-

neous y filled rectangular (or parallel plate) wave-

guide modee in conjunction with a proper modelling

of the tangential field in the metallization plane.

The main disadvantages of this approach are:

1.)

2.)

3.)

The effect of the discontinuity on the dominant

mode only is available. No information concer-

ning high-order modes can be obtained.

A complex discontinuity which is composed of a

number of cascaded simple discontinuities (e.g.

steps) hae to be analyzed “as a whole”. The

properties of the individual simple discontinui-

ties cannot, in general, be used to construct

an accurate solution for the complex disconti-

nuity due to the lack of information about
high-order modes.

Complex discontinuities need a large number of

basis functions to properly model the tangenti-

al field in the fins’ plane. This may lead to
dealing with oversized matrices which needs

excessive computation time.

The second approach depends on the modal expan-
eion concept (e.g. /4/ – /6/). The generalized scat-

tering or transmission matrix, which contains all

information about the dominant as well as the

higher order modes is obtained for simple disconti-
nuities (e.g. steps). Complex discontinuities can be
analyzed by processing the generalized scattering

or transmission matrices characterizing the indivi-

dual simple steps. The main problem in this ap-

proach is the accurate determination of an approxi-

mately complete set of finline modes.

As has already been shown /7/, the Singular Inte-

gral Equation (SIE) technique is very efficient for

determining such a set. It has also been shown

that complex modes can be supported by finlinee

/8/, so that ignoring these modes in constructing
an approximately complete set of finline modes may
lead to erroneous solutions.

This paper is addressed to study the effect of
overlooking complex modes on the solution of fin-

line discontinuity problems.

2. EFFECT OF IGNORING A MODE AT ONE SIDE OF

THE DISCONTINUITY

The problem will be discussed for the discontinuity

shown in Fig. (1), Waveguides “ 1“ and “2” are as-

eumed to be quite general, except for the restric-

tion that both have discrete modal spectrum, which

simplifies the discussion to some extent. Matching N

modes of guide “l” to M modee of guide “2” at the
discontinuity plane z = O can be viewed as “a simi-
Iarit y balance process”. The mode coupling coeffi-

cient defined in /5/ for the boundary reduction

case

(1)

s~

represents a measure of the degree of similarity

between the n’th mode in guide “l” and the m’th

mode in guide “2” (which has the smaller cross

section in the boundary reduction case). Two diffe-

rent modes in either guide “l” or guide “2” are

then completely “dissimilar” due to the orthogonali-

ty relations /5/

s;
(2)

s~

6mm means the Kronecker symbol.
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The n’th mode excited in guide “l” (which will be
called mode (a) ) is balanced by exciting a “similar”
field in guide “2”. This similar field is, in general,
composed of a superposition of all the M modes in

guide “2”, the magnitude of each depends on its

degree of similarity to mode (a). In particular, the

magnitude of a mode with a high degree of simila-

rity will dominate the magnitudes of the other, less

similar, modes. This similarity balance process is

applied to each of the N modes in guide “l”.

Let us assume now that the myth mode in guide “2”

(which will be called mode (b)) has the largest
degree of similarity to mode (a). Omitting mode (b)

from the M modes of guide “2” can only be com-

pensated by increasing the magnitudes of modes

being less similar to mode (a), in order to get back

the similarity balance. This will disturb the modal

distributions (and hence the stored energy) at

both sides of the discontinuity. It is important to

note that this disturbance does not necessarily de-

pend on how strongly mode (a) is excited. Balan-

cing a weakly excited mode in guide “l” may re-

quire strongly excited modes in guide “2” which
have a very weak degree of similarity to that

mode.

Omitting, however, both mode (a) and mode (b) will

have a much smaller effect on the modal distribu-

tions, in particular, if both are just weakly

excited.

3. EFFECT OF IGNORING COMPLEX MODES ON

FINLINE DISCONTINUITIES

As has already been shown /7/, finline modes

change their nature as any of the finline parame-
ters changes. A pair of an inductive and a capaci–

tive evanescent modes may become a complex pair,

and vice versa, as the slot width (e.g. ) changes. If
we would analyze a discontinuity using only usual

(non-complex) modes it can happen that a pair (or

more) of modes on one side of the discontinuity is

non-complex, while the corresponding pair on the

other side, which has the largest degree of simila-

rity, is a complex one. Both, the modal distributions

and the stored energy on both sides of the discon-

tinuity y would then be greatly affected, even if the

former pair is not strongly excited. The situation is

much better if both pairs were complex, so that

both would be ignored in the matching process.

4. NUMERICAL RESULTS

In order to check the accuracy of the numerical

results, which takes complex modes into account,

comparison to measured data in Kaband is demon-

strated in Fig. 2, which shows the frequency re-

sponse of the resistive (Fig. 2a) and reactive (Fig,

2b) parts of the normalized input impedance of the
waveguide-finline junction shown in Fig. 3.

Table I shows the stored energy distributions at
both sides of the finline discontinuity shown in
Fig. 4, computed with and without taking complex

modes into consideration, Due to the large slot
width ratio (s ~/s2 = 35), convergence had to be
achieved by using 20 modes at both sides of the

discontinuity. The incident field is the dominant
mode at side “l” carrying unit power. The domi-
nant mode at side “2” shows a standing wave pat-

tern within the distance 1 between the discontinu-

ity and the open circuit. It stores capacitive ener-

gy because 1 is slightly larger than half a guide
wavelength for this mode (1 : 5.0 mm, Ag 2 = 8.945
mm). If complex modes are omitted the stored ener–
gy is calculated with an error of 19.34 %. The total
energy, on the other hand, which is stored in both
the dominant mode and all higher order modes

turns out to amount to -0.4059 taking complex

modes into account while it is +0.1272 if these

modes are omitted. The corresponding normalized
input impedance at the discontinuity plane is

-jO.1039 with and +jO.0001 without complex modes.

The error is larger than 100 %, because the effect

of overlooking complex modes has changed the ca-

pacitive nature of the structure between the dis-

continuity and the open circuit into an inductive
one.

It should be pointed out that this severe error is

due to overlooking only one pair of complex modes

(namely the 8’th and 9’th modes at side “2”), which

are only weakly excited. The error would be much

more disastrous if many complex mode pairs would
exist on one or both sides of the discontinuity.
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Frequency response of the normalized in-

put impedance of the waveguide-finline
junction shown in Fig. 3
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3 I 4mode
order

2

jO.6209

+0.0046

+0.0044

5

jl .6513

+0.0043

+0.0033

15

-]2.5746

+0.0065

+0.0037

6

-jl .7001

-0.1749

-0.2510

16

-]2.6949

7 8 9 10

zjl. 1519 -jl .6490

+0. 1409 +0.0001

+0.1204 +0.0001

8
l/(mm)

0.4853
-]1 .7043 -jl.8729 jl.8770 .j2.0855

energy
~~th C.M. +0.2554 +0.0976

+0.1377

17

-]2.7514

+0.0081

+0.0061

+0.0009 -0.0009 –0.0632

energy
without -0.0003 +0.0009 -0.0008 -0.0911

14

-j2.4409

-0.0007

-0.0011

13

]2.4184

+0.0005

+0.0006

mode
order

8
l/(m)

11
I

12 18 19 20

*

.]2.1089 -]2. 1094

+0.0610 +0.0192

+0.0000 +0.0000

]3.0220 -]3.1225 ]3.1641

energy
v~th C.M. -0.0279 +0.0724 +0.0030 -0.0012

energy
without -0.0458 +0.0264 +0.0005 -0.0392

Table I-a

mode 1
order

2 3 4 5 6 7 8 9 10

8 0.7024 0.0073 -0.0073
l/(mm) -j0.6037 -]0 .7271 -jl .5945 -]1 .6488 -]1 .6772 -]1 .7427 -jl .8699 -]1 .8699 -]1 .8886

energy
with C.M. –0.8219 +0.0630 +0.2718 +0.0381 +0.0000 +0.0054 +0.0375 -0.0008 -0.0008 -0.0016

energy
without -0.6629 +0.0879 +0.3971 +0.1023 +0.0000 +0.0198 +0.1278 ------- -0.0000

mode
11

order
12 13 14 15 16 17 18 19 20

13
l/(m) -]1 .9680 -]2.3999 -]2.4095 -]2. 4667 -]2.4745 -]2. 5318 -]2 .6976 -j3.0679 -)3.1139 -j3.2065

energy
w=th C.M. +0.0006 +0.0164 -0.0174 -0.0035 +0.0181 +0.0002 +0.0175 +0.0035 -0.0167 -0.0153

energy
without +0.0221 +0.0058 -0.0132 -0.0053 +0.0022 +0.0002 +0.0089 +0.0032 -0.0058 -0.0027

Table I–b

Table 1: Modal energy distribution of the discontinuity shown in fig. 4 with

and without taking complex modes into account. Operating fre-
quency = 30 GHZ

a) at side “1”

b) at side “2”
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